
HYDRICHLER

Kugelhähne

Kurzübersicht / Einteilung

a) Absperr- und Dreiwegekugelhähne aus Stahl Hochdruckbereich

Benennung	Bemerkung	Bestellcode	Seite
BK	Stahl-Kugelhahn		4
SK	Stahl-Kugelhahn		6
DBK	Dreiwege-Umschalt-Kugelhahn		8

b) Absperr- und Dreiwegekugelhähne aus Messing Niederdruckbereich

Benennung	Bemerkung	Bestellcode	Seite
34	Miniatur-Kugelhahn		10
90	Messing-Kugelhahn		11
33	Messing-Kugelhahn		12
120	Messing-Kugelhahn		13
131	Kugelauslaufhahn		14
132	Kugelauslaufhahn mit Schlauchverschraubung		15
133	Dreiwege-Kugelhanh mit T-Bohrung		16
134	Dreiwege-Kugelhanh mit L-Bohrung		17

c) Absperr- und Dreiwegekugelhähne aus Stahl, Messing oder Edelstahl mit aufgebauten pneumatischen Drehantrieben

Benennung	Bemerkung	Bestellcode	Seite
PKM	2/2-Wege-Pneumatik-Kugelventil		18
PKV	2/2-Wege-Pneumatik-Kugelventil		20

d) Absperr- und Dreiwegekugelhähne aus Edelstahl Mittel- und Hochdruckbereich

Benennung	Bemerkung	Bestellcode	Seite
KH	Edelstahl-Niederdruck-Kugelhahn		23
830	Edelstahl-Niederdruck-Kugelhahn		24
840	Edelstahl-Niederdruck-Kugelhahn		25
RKH	Edelstahl-Hochdruck-Kugelhahn		26
BK / SK	Dreiwege-Edelstahl-Kugelhahn		28

Information zur Beständigkeitstabelle (Seite 3)

Die nebenstehende Beständigkeitstabelle stellt einen Erfahrungswert aus vielen einzelnen Test's in der Praxis dar.

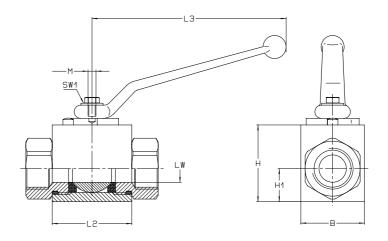
Jeder Anwendungsfall hat seine speziellen Probleme und Erfordernisse. Keine Anwendungsmöglichkeit ist identisch.

Sollten Sie spezielle Medien verwenden, so fragen Sie bitte an. Wir werden bemüht sein, Ihre Anfragen raschest zu beantworten.

Beständigkeitstabelle (ohne Gewähr auf Vollständigkeit)

Part Part	
+ + + - Ameisensäure	
+ + + - Ameisensäure	
□ + + + - Ameisensäure	
+ + + - Ameisensäure	
+ □ + + + + □ + + Argon, max. 100°C, Gas + + □ + + □ + + □ + + + □ + + + □ Kolendioxyd + + + + + + □ □ □ + + Alkohol □ □ □ + □ + + □ □ □ + + □ □ □ + + □	
+ + + + + - □ □ ○ + + Ate-Bremsflüssigkeit + □ + + + □ + + □ □ + + + ○ Kolendioxyd □ □ □ □ + ○ + + Alkohol □ - □ + ○ + + Lacke / Lösungsmittel + + + + + + □ □ ○ ○ + □ Äther □ □ - + + □ ○ + + □ ○ + + Laugen (alkalisch) + + + + + + + + + + + + + + + + + + +	
- - - - + - - - + - -	
+ + + + +	
+ + + + + + + + - Azeton + + + + + + + + + + + + + + + + + + +	l l
- □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
+ -	
+ + + + +	
+ +	
+ + + + + - - + + Benzol	
- - - + - - O + + Bier D D - + - O + + O Methanol	
+ + + + + + + + + + Bohröl	
+ + + + + + + + + + Butan + - + Butan + - + - + - + - + - + - Mineralöl, + 200°C	
- - + +	
+ - D O + - Cadmiumchlorid, max. + 200°C	
+ + + + + + + + + Cadmiumsulfat, +75°C + + + + + + + + + + + Naphta	
+ □ - + + + □ - + □ Calziumhydroxyd + □ - + + + □ Nitroverdünnung	
+ - - + + - + - Calziumkarbonat	
- - - - - - - - - -	
+ + + + + + - Dampf, max. + 170°C	
+ + + + + + + + Dieselkraftstoff + O O O + O Ozon, feucht	
+ + + + + + + + + + Emulsion Öl-Wasser + + + - + O + - Perchloräthylen	
+ - + + + - + Erdgas, + 100°C + + + + + + + + Petrolium A1, JP 1 + JP 4 + + + + + + + + + +	
+ + + + - O O + O Farben und Lösungsmittel + + + + + + D O + + Propylen - - + - O + - Fettsäure, + 200°C + + + + - + - + + Pydraul F9	
+ + + + + + - Pour library + 200°C	
+ + + + + □ □ - + + Flugtreibstoff JP 1 + JP 4	
□ □ + □ □ + - + + Flüssiggas "LPG"	
□ □ □ + + ○ Freon (Frigen F 12, F 22)	
- - + + - - O + O Gas natur LNG flüssig, -162°C	
+	
+ □ + + - + - + - Gas (Intergas), + 200°C + - + - + - Salzsäure	
+ + + + + + - + + Gasöl / Kondensat + + + + + - - + - Schweröl	
□ □ □ + + + + + □ Glykol	
+	
+ + + + + + O + + Grubenwasser	
□ □ - + + + - Glyzerin	
+	
+ + + + + + + - + + Heizöl leicht, max. + 80°C + + + + + + + + + + + Terpentin + + + + + + + Heizöl schwer, max. + 200°C + + + + + + + + + + + + Terpentin	
+ + + + - - - + - -	
+ + + + - + + Hydraulik-Flüssigkeit (Mineralöl-Basis)	
+ + + + + - + + Hydraulik-Flüssigkeit (Phosphat-Esterbasis) + □ □ + ○ + - + + Transformatorenöl	
□ □ + + □ + ○ + + Heptan	
□ □ □ □ □ + - + + Hexan	
+ + - + + + - Isopropylalkohol + + + + + + + + Wasser, destilliert	
+ + + + + + + + +	
□ + + + + + + + + + Kaltwasser + □ □ + + + Xylol	

Stahl-Kugelhahn


Typ: BK

Material:

Gehäuse: Stahl / brüniert Kugel: Stahl / vernickelt Schaltwelle: Stahl / verzinkt Kugeldichtung: Polyamid Schaltwellendichtung: NBR Handhebel: Aluminium

Betriebstemperatur:

-10°C bis +100°C

Gehäusemaße, gültig für alle Kombinationen

DN	LW	PN (bar)	L2	L3*	В	Н	H1	SW1	М
4	5	500	36		26	32	13	9	M5
6	6	500	36		26	32	13	9	M5
8	8	500	36		26	32	13	9	M5
10	10	500	43		32	38	16	9	M5
13	13	500	48		35	40	17,5	9	M5
16	15	500	48		38	46	19	12	M6
20	20	400	62		49	57	24,5	14	M6
25	24	350	66		60	60	26,5	14	M6
32	24	350	66		60	60	26,5	14	M6
40	24	350	66		60	60	26,5	14	M6

* bei Bedarf anfragen

Anschlußart	Bestell-Nr.	DN	LW	G/D	øRA	L	L1	SW	Gewicht (kg)
Rohrgewinde DIN/ISO 228		4	5	G 1/8"	-	69	9	22	0,35
SW		6	6	G 1/4"	-	69	12	22	0,35
		8	8	G 3/8"	-	69	12	22	0,35
() (10	10	G 3/8"	-	73	12	27	0,5
Ġ LW		13	13	G 1/2"	-	85	14	30	0,65
Ĭ Ĭ		16	15	G 5/8"	-	84	14	32	0,75
		20	20	G 3/4"	-	96	17	41	1,5
		25	24	G 1"	-	113	19	46	2
-L1-		32*	24	G 1 1/4"	-	121	20	50	2,1
- 1		40*	24	G 1 1/2"	-	124	24	55	2,2
Rohrverschraubung leichte		4	5	M 12 x 1,5	6	67	10	22	0,3
Reihe DIN 2353		6	6	M 14 x 1,5	8	67	10	22	0,3
SW		8	8	M 16 x 1,5	10	71	11	22	0,3
<u></u>		10*	8	M 18 x 1,5	12	71	11	22	0,3
		10	10	M 18 x 1,5	12	75	11	27	0,5
1 G ØRA LW		13*	10	M 22 x 1,5	15	77	12	27	0,5
24 G ØRA LW		13	13	M 22 x 1,5	15	84	12	30	0,6
		13**	13	M 22 x 1,5	15	83	12	32	0,75
		16*	13	M 26 x 1,5	18	84	12	30	0,6
 - - 1-		16	15	M 26 x 1,5	18	83	12	32	0,75
		20	20	M 30 x 2	22	102	14	41	1,5
HL		25	24	M 36 x 2	28	108	14	46	2
		32*	24	M 45 x 2	35	114	16	50	2,1
		40*	24	M 52 x 2	42	114	16	55	2,2
Dahw aya ahya uhu wa a ahu yaya		4	5	Macyas	0	70	10	00	0.05
Rohrverschraubung schwere				M 16 x 1,5	8	73 73	12	22	0,35
Reihe DIN 2353		6 8	6 8	M 18 x 1,5 M 20 x 1,5	10	76	12 12	22 22	0,35 0,35
<u>sw</u>		10	10	M 22 x 1,5	14	84	14	27	0,55
\searrow		13	13	M 24 x 1,5	16	87	14	30	0,6
		13**	13	M 24 x 1,5	16	87	14	32	0,75
24' G ØRA LW		16*	13	M 30 x 2	20	91	16	30	0,75
		16	15	M 30 x 2	20	91	16	32	0,75
		20	20	M 36 x 2	25	110	18	41	1,5
		25	24	M 42 x 2	30	120	20	46	2,1
- - - L1-		32*	24	M 52 x 2	38	125	22	55	2,3
L_L_		02		02 x 2		120			2,0
Rohrstutzen schwere		8	8		12			22	0,3
Reihe DIN 2353		10	10		14			22	0,3
<u>sw</u>									
λ (
, 									
24. p r.m									
L1									
LL									

Die max. zul. PN bitte den Angaben der Rohrverschraubungshersteller entnehmen

- * reduzierte Nennweite
- ** Gehäuse DN 16

Stahl-Kugelhahn

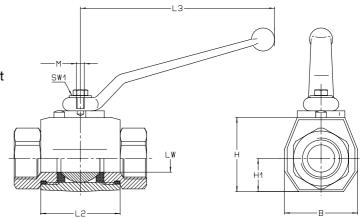
Typ: SK

Material:

Gehäuse: DN4 - DN25 Stahl C22.8/9SMn 28k / brüniert

DN32 - DN50 Stahl 52-3 / brüniert

Kugel: Stahl / vernickelt Schaltwelle: Stahl / verzinkt


Kugeldichtung: Polyamid

ab DN32 Polyacetal

Schaltwellendichtung: NBR Handhebel: Aluminium

-10°C bis +100°C

Gehäusemaße, gültig für alle Kombinationen

DN	LW	PN (bar)	L2	L3*	В	Н	H1	SW1	М
4	5	600	35		5	38	19	9	M5
6	6	600	35		35	38	19	9	M5
8	8	600	35		35	38	19	9	M5
10	10	500	42		35	38	16,5	9	M5
13	13	500	47		40	40	17,5	9	M5
20	20	400	61		49	57	24,5	14	M6
25	24	400	65		58	63	28	14	M6
32	32	350	80		76	84	38	17	M8
40	38	350	85		83	92	43	17	M8
50	48	350	100		100	111	50	19	M8

* bei Bedarf anfragen

Anschlußart	Bestell-Nr.	DN	LW	G	øRA	L	L1	SW	Gewicht (kg)
Rohrgewinde DIN/ISO 228		4	5	G 1/8"	-	69	9	22	0,35
Ü		6	6	G 1/4"	-	69	12	22	0,35
<u>sw</u>		8	8	G 3/8"	-	69	12	22	0,35
		10	10	G 3/8"	-	73	12	27	0,5
		13	13	G 1/2"	-	85	14	30	0,65
6 LW +		20	20	G 3/4"	-	96	17	41	1,5
		25	24	G 1"	-	113	19	46	2
		32*	24	G 1 1/4"	-	121	20	50	2,1
-1 1-		32	32	G 1 1/4"	-	110	20	60	3,2
		40*	24	G 1 1/2"	-	124	24	55	2,2
L-		40*	32	G 1 1/2"	-	135	24	60	3,2
		40	38	G 1 1/2"	-	120	22	70	4
		50*	38	G 2"	-	147	26	75	4,7
		50	48	G 2"	-	140	28	85	5,9
Rohrverschraubung leichte		4	5	M 12 x 1,5	6	67	10	22	0,3
Reihe DIN 2353		6	6	M 14 x 1,5	8	67	10	22	0,3
CW		8	8	M 16 x 1,5	10	71	11	22	0,3
<u>sw</u>		10*	8	M 18 x 1,5	12	71	11	22	0,3
		10	10	M 18 x 1,5	12	75	11	27	0,5
		13*	10	M 22 x 1,5	15	77	12	27	0,5
24' Ġ ØŔA LW ###################################		13	13	M 22 x 1,5	15	84	12	30	0,6
		16	13	M 26 x 1,5	18	84	12	30	0,6
		20	20	M 30 x 2	22	102	14	41	1,5
		25	24	M 36 x 2	28	108	14	46	2
-		32*	24	M 45 x 2	35	114	16	50	2,1
H-L-		32	32	M 45 x 2	35	128	16	60	3
		40*	24	M 52 x 2	42	114	16	55	2,2
		40*	32	M 52 x 2	42	128	16	60	3
		40	38	M 52 x 2	42	133	16	70	3,8
Rohrverschraubung schwere		4	5	M 16 x 1,5	8	73	12	22	0,35
Reihe DIN 2353		6	6	M 18 x 1,5	10	73	12	22	0,35
SW		8	8	M 20 x 1,5	12	76	12	22	0,35
		10	10	M 22 x 1,5	14	84	14	27	0,5
		13	13	M 24 x 1,5	16	87	14	30	0,6
1 w		16*	13	M 30 x 2	20	91	16	30	0,65
		20	20	M 36 x 2	25	110	18	41	1,5
		25	24	M 42 x 2	30	120	20	46	2,1
		32*	24	M 52 x 2	38	125	22	55	2,3
		32	32	M 52 x 2	38	140	22	60	3,1
<u> </u>									

Die max. zul. PN bitte den Angaben der Rohrverschraubungshersteller entnehmen

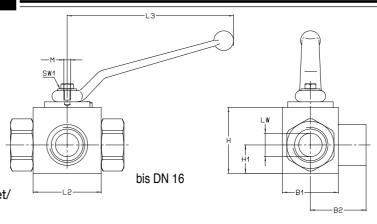
^{*} reduzierte Nennweite

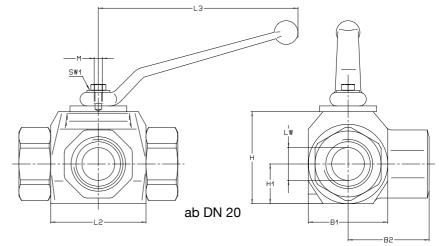
Dreiwege-Umschalt-Kugelhahn

Typ: DBK

Material:

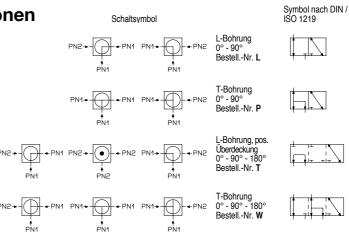
Gehäuse: DN4 - DN16 Stahl / brüniert


DN20 - DN50 Stahl /geschmiedet/


brüniert

Kugel: Stahl / vernickelt Schaltwelle: Stahl / verzinkt Kugeldichtung: Polyacetal Schaltwellendichtung: NBR Handhebel: Aluminium

Betriebstemperatur:


-10°C bis +100°C

Gehäusemaße, gültig für alle Kombinationen

DN	PN 1** (bar)	PN 2** (bar)	L2	L3*	B1	Н	H1	SW1	М
4	400	100	36		26	32	13	9	M5
6	400	100	36		26	32	13	9	M5
8	400	100	36		26	32	13	9	M5
10	400	100	43		32	38	16,5	9	M5
13	350	100	48		35	40	17,5	9	M5
16	350	100	48		38	46	19	12	M6
20	350	70	61		49	57	24,5	14	M6
25	350	70	65		60	60	26,5	14	M6
32	350	70	80		76	84	38	17	M8
40	350	70	85		83	92	43	17	M8
50	350	70	100		100	111	50	19	M8

- bei Bedarf anfragen
- ** <u>Für Standardausführung:</u> Druck von PN1 + PN2 siehe Schaltbilder

Auf Wunsch allseits Druckbeaufschlagung möglich = PN1

Bei Bestellung A angeben

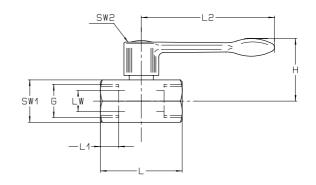
L-Bohrung = Standardausführung Alle Anderen Bohrungen (P,T,W) nur auf Bestellung

Anschlußart	Bestell-Nr.	DN	LW	G	øRA	L	L1	B2	SW	Gewicht (kg)
Rohrgewinde DIN/ISO 228		4	5	G 1/8"	-	69	9	32	22	0.4
		6	6	G 1/4"	_	69	12	32	22	0,4
<u>sw</u>		8	7	G 3/8"	_	69	12	37	22	0,4
		10	9	G 3/8"	-	73	12	35	27	0,55
. 🛏 \		13	11,5	G 1/2"	-	85	14	37	30	0,7
Ġ LW +		16	14	G 1/2"	-	84	14	38	32	0,8
<u>'</u>		20	18	G 3/4"	-	96	17	47	41	1,55
		25	22	G 1"	-	113	19	55	46	2,1
		32*	22	G 1 1/4"	-	121	20	55	50	2,2
-L1-I		32	30	G 1 1/4"	-	110	20	70	60	3,4
L-		40	35	G 1 1/2"	-	120	24	72	70	4,2
		50	44	G 2"	-	140	28	85	85	6,1
Rohrverschraubung leichte		4	5	M 12 x 1,5	6	67	10	32	22	0,35
Reihe DIN 2353		6	6	M 14 x 1,5	8	67	10	32	22	0,35
		8	7	M 16 x 1,5	10	71	11	32	22	0,35
<u>sw</u>		10	7	M 18 x 1,5	12	71	11	32	22	0,35
λ (10	9	M 18 x 1,5	12	75	11	40	27	0,55
		13*	9	M 22 x 1,5	15	77	12	40	27	0,55
24' G ØRA LW		13	11,5	M 22 x 1,5	15	84	12	42	30	0,65
1 1		16*	11,5	M 26 x 1,5	18	84	12	42	30	0,65
		16	14	M 26 x 1,5	18	83	12	43	32	0,8
		20	18	M 30 x 2	22	102	14	47	41	1,6
 L1		25*	18	M 36 x 2	28	102	14	47	41	1,7
L		25	22	M 36 x 2	28	108	14	55	46	2,1
		32*	22	M 45 x 2	35	114	16	55	50	2,2
		32	30	M 45 x 2	35	128	16	69	60	3,2
		40*	30	M 52 x 2	42	128	16	68	60	3,2
		40	35	M 52 x 2	42	133	16	72	70	4
Rohrverschraubung schwere		4	5	M 16 x 1,5	8	73	12	32	22	0,4
Reihe DIN 2353		6	6	M 18 x 1,5	10	73	12	32	22	0,4
aw.		8	7	M 20 x 1,5	12	76	12	32	22	0,4
SW		10	9	M 22 x 1,5	14	84	14	35	27	0,55
		13	11,5	M 24 x 1,5	16	87	14	42	30	0,65
		16*	11,5	M 30 x 2	20	91	16	42	30	1,7
24. 6 øku rim		16	14	M 30 x 2	20	91	16	43	32	0,8
		20	18	M 36 x 2	25	110	18	47	41	1,6
		25	22	M 42 x 2	30	120	20	55	46	2,1
		32	30	M 52 x 2	38	140	22	74	60	3,2
_ _L1-										

Die max. zul. PN bitte den Angaben der Rohrverschraubungshersteller entnehmen

* reduzierte Nennweite

Miniatur-Kugelhahn


Typ: 34

Material:

Gehäuse: Messing verchromt Kugel: Messing hartverchromt

Kugeldichtung: Teflon Spindeldichtung: Viton

Griff: Polyamid schwarz

Bestell-Nr.	DN	LW	G	L	L1	SW1	SW2	L2	Н	Gewicht (kg)
34 - R 1/4	6	8	R 1/4"	41	10	21	9	72	28,5	0,11
34 - R 3/8	10	8	R 3/8"	41	10	21	9	72	28,5	0,1
34 - R 1/2	12	10	R 1/2"	48	11	25	9	72	30,5	0,14

Druck: max. PN 16 bar Temperatur: max. 80°C

Messing-Kugelhahn

Typ: 90

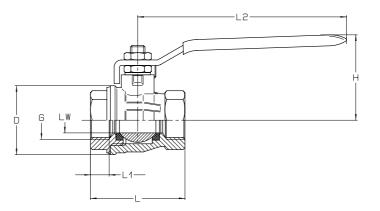
Material:

Gehäuse: Messing

Kugel: Messing hartverchromt

Kugeldichtung: Teflon

Griff: Stahl verzinkt mit Kunststoff


überzogen

Betriebstemperatur:

-20°C bis +180°C (abhängig vom Betriebsdruck)

Verwendung:

für Wasser, Öl, Druckluft, Kraftstoff, Lösungsmittel, Dampf usw.

Bestell-Nr.	DN	LW	PN (bar)	G	L	L1	D	L2	Н	Gewicht (kg)
90 - R 1/4	6	8	30	R 1/4"	39	8,5	25	100	53	0,12
90 - R 3/8	10	10	30	R 3/8"	39	8,5	25	100	53	0,11
90 - R 1/2	15	15	30	R 1/2"	50	10	32	100	57	0,18
90 - R 3/4	20	20	30	R 3/4"	54	11	39	125	62	0,28
90 - R 1	25	25	30	R 1"	67	13	48	125	66	0,4
90 - R 1 1/4	32	32	25	R 1 1/4"	77	14	59	155	90	0,7
90 - R 1 1/2	40	40	25	R 1 1/2"	90	16	72	155	96	0,95
90 - R 2	50	50	25	R 2"	106	17	86	155	103	1.47

Messing-Kugelhahn

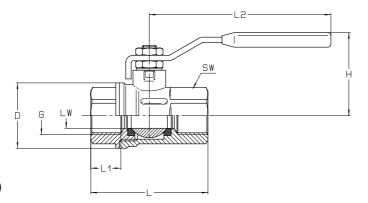
Typ: 33

Material:

Gehäuse: Messing vernickelt Kugel: Messing hartverchromt

Kugeldichtung: Teflon

Griff: Stahl verzinkt mit Kunststoff


überzogen

Betriebstemperatur:

-30°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

für Wasser, Öl, Druckluft, Kraftstoff, Lösungsmittel, Dampf, Gas*

Bestell-Nr.	DN	LW	PN (bar)	G	L	L1	D	SW	L2	Н	Gewicht (kg)
33 - R 1/4	6	8	64	R 1/4"	51	12,5	28	22	100	42	0,17
33 - R 3/8	10	10	64	R 3/8"	51	12,5	28	22	100	42	0,17
33 - R 1/2	15	15	64	R 1/2"	61	15,5	34	27	100	45	0,25
33 - R 3/4	20	20	40	R 3/4"	74	18	44	32	120	53	0,45
33 - R 1	25	25	40	R 1"	91	21	52	41	120	57	0,72
33 - R 1 1/4	32	32	40	R 1 1/4"	104	23	66	50	160	75	1,14
33 - R 1 1/2	40	40	40	R 1 1/2"	117	24,5	80	55	160	82	1,5
33 - R 2	50	50	40	R 2"	135	26,5	96	70	160	89	2,57

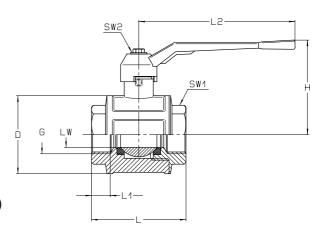
^{*} falls DVGW-Zulassung erforderlich Baureihe 60 verwenden

Messing-Kugelhahn

Typ: 120

Material:

Gehäuse: Messing vernickelt Kugel: Messing hartverchromt


Kugeldichtung: Teflon Griff: Alu rot lackiert

Betriebstemperatur:

-30°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

für Wasser, Öl, Druckluft, Kraftstoff, Lösungsmittel, Gas

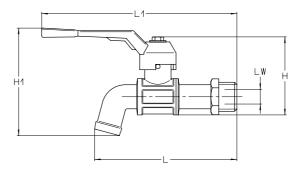
Bestell-Nr.	DN	LW	PN (bar)	G	L	L1	D	SW1	SW2	L2	Н	Gewicht (kg)
120 - R 2 1/2	65	65	16	R 2 1/2"	148	24	122	85	20	250	128	5,25
120 - R 3	80	80	16	R 3"	168	26	142	99	20	250	137	6,5
120 - R 4	100	100	16	R 4"	206	30	180	125	20	250	155	11,85

Kugelauslaufhahn

Typ: 131

Material:

Gehäuse: Messing vernickelt Kugel: Messing hartverchromt


Kugeldichtung: Teflon Griff: Alu rot lackiert

Betriebstemperatur:

-20°C bis +200°C (abhängig vom Betriebsdruck)

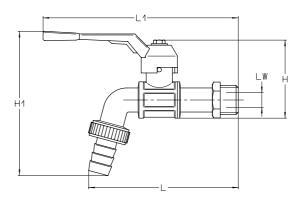
Verwendung:

Kugelauslaufhahn mit Schlauchverschraubung

Baureihe 132

Material:

Gehäuse: Messing vernickelt Kugel: Messing hartverchromt


Kugeldichtung: Teflon Griff: Alu rot lackiert

Betriebstemperatur:

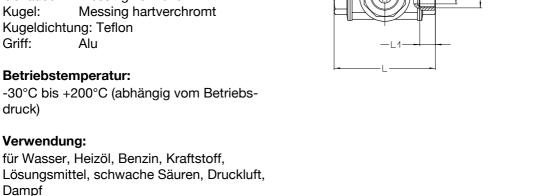
-20°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

Bestell-Nr.	DN	LW	L	L1	Н	H1	Gewicht (kg)
132 - 1/2	1/2"	10	102	140	60	108	0,28
132 - 3/4	3/4"	12	114	145	60	113	0,38
132 - 1	1"	15	135	155	70	134	0,6

Dreiwege-Kugelhahn mit T-Bohrung

Typ: 133


Material:

Gehäuse: Messing vernickelt Kugel:

Griff:

druck)

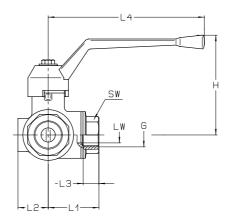
Verwendung:

Bestell-Nr.	DN	LW	PN (bar) bis 80°C	G	L	L1	SW1	L2	Н	Gewicht (kg)
133 - R 1/4	6	11	40	R 1/4"	81	13	22 6-kt	134	86	0,81
133 - R 3/8	10	11	40	R 3/8"	81	13	22 6-kt	134	86	0,81
133 - R 1/2	15	11	40	R 1/2"	81	13	29 8-kt	134	86	0,81
133 - R 3/4	20	15	40	R 3/4"	92	15	34 8-kt	170	102	1,26
133 - R 1	25	20	25	R 1"	108	17	41 8-kt	210	115	1,93
133 - R 1 1/4	32	25	16	R 1 1/4"	119	19	50 8-kt	210	115	2,6
133 - R 1 1/2	40	32	16	R 1 1/2"	140	22	57 8-kt	210	115	4,1
133 - R 2	50	40	16	R 2"	164	27	80 8-kt	260	13	6,44

Dreiwege-Kugelhahn mit L-Bohrung

Typ: 134

Material:


Gehäuse: Messing vernickelt Kugel: Messing hartverchromt

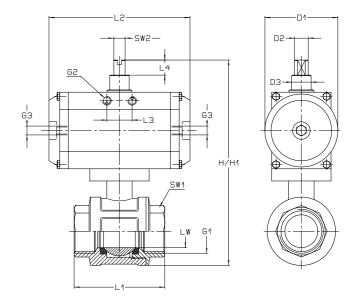
Kugeldichtung: Teflon Griff: Alu

Betriebstemperatur:

-30°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

Bestell-Nr.	DN	LW	PN (bar) bis 80°C	G	L1	L2	L3	SW1	L4	Н	Gewicht (kg)
134 - R 1/4	6	11	40	R 1/4"	40	23	13	22 6-kt	134	86	0,81
134 - R 3/8	10	11	40	R 3/8"	40	23	13	22 6-kt	134	86	0,81
134 - R 1/2	15	11	40	R 1/2"	40	23	13	29 8-kt	134	86	0,81
134 - R 3/4	20	15	40	R 3/4"	46	28	15	34 8-kt	170	102	1,26
134 - R 1	25	20	25	R 1"	54	31	17	41 8-kt	210	115	1,93
134 - R 1 1/4	32	25	16	R 1 1/4"	59	35	19	50 8-kt	210	115	2,6
134 - R 1 1/2	40	32	16	R 1 1/2"	70	42	22	57 8-kt	210	115	4,1
134 - R 2	50	40	16	R 2"	82	48	27	80 8-kt	260	13	6,44



2/2-Wege-Pneumatik-Kugelventil

Typ: PKM

Besondere Merkmale:

- voller Durchgang
- wartungsfreie Spindelabdichtung
- Stellungsanzeige Auf/Zu
- Handbetätigung
- direkt anbaubares Steuerventil

Bestell-Nr.	G1	LW	L1	SW1	D	С	Α	L2	Н	H1 *	D1	L3	SW2	D2	L4	D3	G2	G3
	1/2	15	56	25	D 50	-	-	100	135	-	56	_	10	14	8	14	_	1/8
	1/2	15	56	25	-	C 50	A 50	142	135	-	56	-	10	14	8	14	-	1/8
	1/2	15	56	25	D 60	C 60	A 60	112	145	225	67	22	8	11	8	12	1/8	-
a>	3/4	20	68	31	D 50	-	-	100	145	240	56	-	8	14	8	14	-	1/8
 	3/4	20	68	31	-	C 50	A 50	142	145	-	56	-	10	14	8	14	-	1/8
Anfr	3/4	20	68	31	D 60	C 60	A 60	112	160	240	67	22	8	11	8	12	1/8	-
	1	25	79	38	D 50	-	-	100	155	-	56	-	10	14	8	14	-	1/8
spezifizierte	1	25	79	38	D 60	C60	A60	112	165	245	67	22	8	11	8	12	1/8	-
ezif	1 1/4	32	90	47	D 60	-	-	112	185	265	67	22	8	11	8	12	1/8	-
	1 1/4	32	90	47	-	C 63	A 63	132	187	267	70	22	8	11	8	12	1/8	-
lhre	1 1/2	40	101	54	D 60	-	-	112	215	295	67	22	8	11	8	12	1/8	-
	1 1/2	40	101	54	-	C 63	A 63	132	217	297	70	22	8	11	8	12	1/8	-
te	2	50	124	66	D 63	-	-	132	232	312	70	22	8	11	8	12	1/8	-
Wir bitten	2	50	124	66	D 75	C 75	A 75	150	245	324	82	22	10	14	10	18	1/8	-
₹	2 1/2	65	148	86	D 85	C 85	A 85	174	295	375	90	22	10	14	10	18	1/8	-
	2 1/2	65	148	86	-	C100	A100	198	315	395	108	30	14	19,5	14	25	1/4	-
	3	80	168	100	D100	C100	A100	198	330	410	108	30	14	19,5	14	25	1/4	-
	4	100	206	125	D100	C100	A100	198	380	460	108	30	14	19,5	14	25	1/4	-
	4	100	206	125	-	C125	A125	276	412	492	134	30	20	28	20	40	1/4	-

Wirkungsweise:

D = doppelwirkend

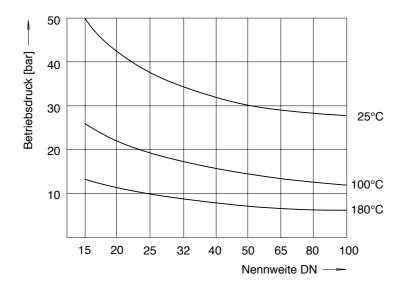
C = einfachwirkend mit Federkraft geschlossen A = einfachwirkend mit Federkraft geöffnet

* H1 = veränderte Bauhöhe durch Verlängerung

Antriebsgrößen:

ø 50 ø 75

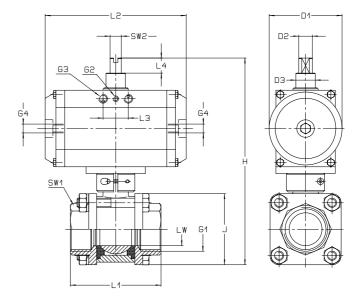
ø 60 ø 85


ø 63 ø 100

Technische Daten:

Bauart	Kugelventil mit schwimmend gelagerter Präzisionskugel in Teflon-Halbschalen
Betätigungsart	pneumatisch doppelt- oder einfachwirkend
Anschlußart	Innengewinde G 1/2" bis G 4" Innen-/Außengewinde G 1/2" bis G 2"
Nennweite	15 mm - 100 mm
Einbaulage	beliebig
Betriebsdruck	Grobvakuum bis 64 bar, siehe Druck-Temperaturdiagramm
Steuerdruck	siehe Diagramm Seite
Steuermedium	Druckluft oder Inertgase
Temperaturbereich	Medium: - 30°C bis + 110°C, Sonderausf. bis 180°C Umgebung: - 20°C bis + 90°C
Werkstoffe: Gehäuse Kugel Schaltwelle Dichtungen	Preßmessing, vernickelt Messing, hartverchromt Messing Kugel- und Schwellendichtung PTFE + FKM (Viton)
Durchflußrichtung	beliebig
Durchflußmedien	alle neutralen Gase und nicht aggressive Flüssigkeiten
Pneumatische Ansteuerung	wahlweise mit direkt angebautem oder separatem 3/2- oder 5/2-Wegeventil, elektrisch, pneumatisch oder manuell betätigt
Weitere Liefervarianten	Armatur aus Stahl, Edelstahl und Kunststoff, mit Gewinde- oder Flanschanschluß, 3/2-Wege-Ausführung

Druck-Temperaturdiagramm



2/2-Wege-Pneumatik-Kugelventil

Typ: PKV

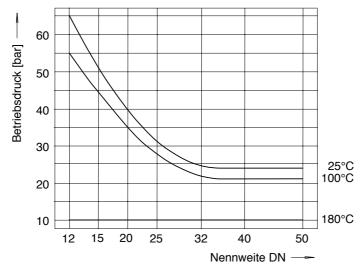
Besondere Merkmale:

- voller Durchgang
- wartungsfreie Spindelabdichtung
- Stellungsanzeige Auf/Zu
- Handbetätigung
- direkt anbaubares Steuerventil

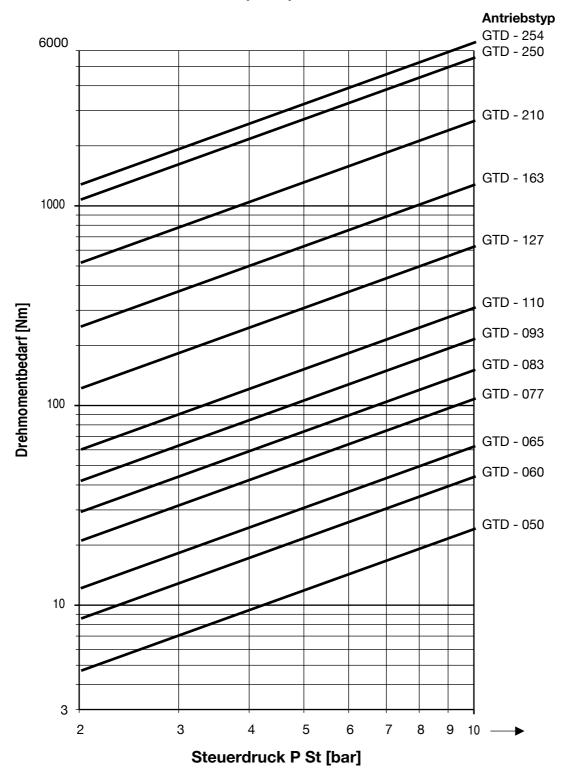
Bestell-Nr.	G1	LW	L1	SW1	D	С	Α	L2	Н	J	D1	L3	SW2	D2	L4	D3	G2	G3	G4
	1/2	15	65	27	D 50	-	-	100	144	38	56	-	10	14	8	14	-	-	1/8
age	1/2	15	65	27	D 60	C 60	A 60	112	170	38	67	22	8	11	8	12	M5	1/8	-
Anfrage	3/4	20	77	32	D 60	-	-	112	178	46	67	22	8	11	8	12	M5	1/8	-
re /	3/4	20	77	32	-	C 63	A 63	132	180	46	70	22	8	11	8	12	M5	1/8	-
zier	1	25	92	41	D 60	-	-	112	190	54	67	22	8	11	8	12	M5	1/8	-
ezifizie	1	25	92	41	-	C 63	A 63	132	192	54	70	22	8	11	8	12	M5	1/8	-
ds	1	25	92	41	-	C 75	A 75	150	204	54	82	22	10	14	10	18	M5	1/8	-
lhre	1 1/4	32	106	50	D 63	C 63	A 63	132	204	66	70	22	8	11	8	12	M5	1/8	-
<u>§</u>	1 1/4	32	106	50	-	C 75	A 75	150	221	66	82	22	10	14	10	10	M5	1/8	-
_	1 1/2	40	115	55	D 63	-	-	132	214	76	70	22	8	11	8	12	M5	1/8	-
bitten	1 1/2	40	115	55	D75	-	-	150	226	76	82	22	10	14	10	10	M5	1/8	-
×	1 1/2	40	115	55	-	C 85	A 85	174	243	76	90	22	10	14	10	18	M5	1/8	-
	2	50	136	70	D85	C 85	A 85	174	250	90	90	22	10	14	10	18	M5	1/8	-

Wirkungsweise:

Antriebsgrößen:


D = doppelwirkend	ø 50	ø 75
C = einfachwirkend mit Federkraft geschlossen	ø 60	ø 85
A = einfachwirkend mit Federkraft geöffnet	ø 63	ø100

Technische Daten:


Bauart	Kugelventil mit schwimmend gelagerter Präzisionskugel in Teflon-Halbschalen Gehäuse dreiteilig
Betätigungsart	pneumatisch doppelt- oder einfachwirkend
Anschlußart	Innengewinde G 1/2" bis G 2" Anschweiß- oder Einschweißenden
Nennweite	10 mm - 50 mm
Einbaulage	beliebig
Betriebsdruck	Grobvakuum bis 63 bar, siehe Druck-Temperaturdiagramm
Steuerdruck	siehe Diagramm Seite
Steuermedium	Druckluft oder Inertgase
Temperaturbereich	Medium: - 30°C bis + 110°C mit Schaltwellenverlängerung bis 180°C Umgebung: - 20°C bis + 90°C
Werkstoffe: Gehäuse Kugel Schaltwelle Dichtungen	Edelstahl AISI 316 Edelstahl AISI 316 Edelstahl AISI 316 PTFE + FKM (Viton)
Durchflußrichtung	beliebig
Durchflußmedien	alle neutralen Gase und Flüssigkeiten, sowie Chemikalien laut Werkstoff-Beständigkeitstabellen
Pneumatische Ansteuerung	wahlweise mit direkt angebautem oder separatem 3/2- oder 5/2-Wegeventil, elektrisch, pneumatisch oder manuell betätigt
Weitere Liefervarianten	Armatur aus Messing, Stahl und Kunststoff, mit Gewinde- oder Flanschanschluß

Druck-Temperaturdiagramm

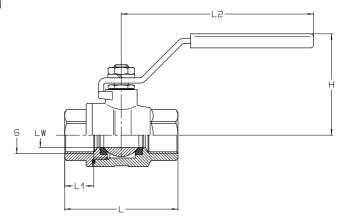
Typenauswahl-Diagramm für doppelwirkende Schwenkantriebe (GTD)

Edelstahl-Niederdruck-Kugelhahn

Typ: 830

Material:

Gehäuse: Edelstahl 1.4408 Kugel: Edelstahl 1.4401 Kugeldichtung: Teflon


Schaltwelle: Edelstahl 1.4401 Griff: Edelstahl 1.4301

Betriebstemperatur:

-20°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

für Wasser, Öl, Druckluft, Kraftstoff, Lösungsmittel, Dampf, aggressive Medien, Lebensmittel, Getränke

Bestell-Nr.	DN	LW	PN (bar)	G	L	L1	L2	Н	Gewicht (kg)
830 - R 1/4	6	9,7	140	R 1/4"	51	10	100	50	0,2
830 - R 3/8	10	11,6	140	R 3/8"	51	10	100	50	0,2
830 - R 1/2	15	12,7	140	R 1/2"	61	14	100	50	0,3
830 - R 3/4	20	15	140	R 3/4"	68	15	130	53	0,46
830 - R 1	25	20	140	R 1"	83	18	130	64	0,68
830 - R 1 1/4	32	25	100	R 1 1/4"	90	20	165	66	0,96
830 - R 1 1/2	40	32	100	R 1 1/2"	104	20	165	79	1,64
830 - R 2	50	38	100	R 2"	117	24	190	83	2,22

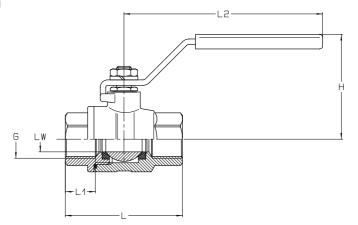
^{*} falls DVGW-Zulassung erforderlich Baureihe 60 verwenden

Edelstahl-Niederdruck-Kugelhahn

Typ: 840

Material:

Gehäuse: Edelstahl 1.4408 Kugel: Edelstahl 1.4401 Kugeldichtung: Teflon


Schaltwelle: Edelstahl 1.4401 Griff: Edelstahl 1.4301

Betriebstemperatur:

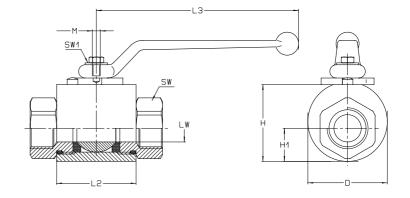
-20°C bis +200°C (abhängig vom Betriebsdruck)

Verwendung:

für Wasser, Öl, Druckluft, Kraftstoff, Lösungsmittel, Dampf, aggressive Medien, Lebensmittel, Getränke

Bestell-Nr.	DN	LW	PN (bar)	G	L	L1	L2	Н	Gewicht (kg)
840 - R 1/4	6	11	64	R 1/4"	54	10	100	50	0,23
840 - R 3/8	10	12	64	R 3/8"	54	10	100	50	0,23
840 - R 1/2	15	16	64	R 1/2"	65	14	130	53	0,38
840 - R 3/4	20	20	64	R 3/4"	72	15	130	64	0,5
840 - R 1	25	25	64	R 1"	84	18	165	66	0,78
840 - R 1 1/4	32	32	40	R 1 1/4"	94	20	165	79	1,2
840 - R 1 1/2	40	38	40	R 1 1/2"	110	20	190	83	1,9
840 - R 2	50	50	40	R 2"	126	24	190	94	2.93

Edelstahl-Hochdruck-Kugelhahn


Typ: RKH

Material:

Gehäuse: Edelstahl AISI 316 Kugel: Edelstahl AISI 316 Schaltwelle: Edelstahl AISI 316 Kugeldichtung: Teflon modifiziert,

mit 15% Fieberglas

Handhebel: Edelstahl AISI 304

Gehäusemaße, gültig für alle Kombinationen

DN	LW	PN (bar)	L2	L3*	D	Н	H1	SW1	М
4	5	400	36		35	32	13	9	M5
6	6	400	36		35	32	13	9	M5
8	8	400	36		35	32	13	9	M5
10	10	400	43		42	38	16,5	9	M5
13	13	400	48		45	40	17,5	9	M5
16	15	400	48		50	46	19	12	M6
20	20	400	62		60	57	24,5	14	M6
25	24	400	66		65	63	28	14	M6
32	32	350	81		90	84	38	17	M8
40	38	350	86		100	93	42,5	17	M8
50	48	350	101		120	111	50	19	M8

^{*} bei Bedarf anfragen

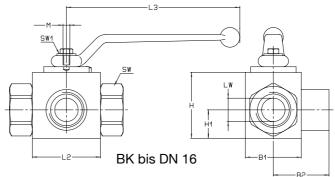
Anschlußart	Bestell-Nr.	DN	LW	G	øRA	L	L1	SW	Gewicht (kg)
01 Rohrgewinde DIN/ISO 228	RKH1 - 1	4	5	G 1/8"	-	69	9	22	0,35
	RKH1 - 2	6	6	G 1/4"	-	69	12	22	0,35
SW	RKH1 - 3	8	8	G 3/8"	-	69	12	22	0,35
	RKH1 - 4	10	10	G 3/8"	-	73	12	27	0,5
	RKH1 - 5	13	13	G 1/2"	ı	85	14	30	0,65
Ġ ĻŴ ————	RKH1 - 6	16	15	G 5/8"	-	84	14	32	0,75
	RKH1 - 7	20	20	G 3/4"	-	96	17	41	1,5
	RKH1 - 8	25	24	G 1"	-	113	19	46	1,8
-L1-	RKH1 - 9	32	24	G 1 1/4"	-	121	20	50	1,9
	RKH1 - 10	40	24	G 1 1/2"	-	124	24	55	2
L-	RKH1 - 11	32	32	G 1 1/4"	-	110	20	60	3,8
	RKH1 - 12	40	32	G 1 1/2"	-	135	24	60	3,8
	RKH1 - 13	40	38	G 1 1/2"	-	120	22	70	6,1
	RKH1 - 14	50	38	G 2"	-	147	26	75	6,1
	RKH1 - 15	50	48	G 2"	-	140	28	85	9,1
02 NPT - Innengewinde ANSI B 2.1	RKH2 - 1	4	5	1/8 - 27 NPT	-	69	12	22	0,35
SW	RKH2 - 2	6	6	1/4 - 18 NPT	-	69	17	22	0,35
	RKH2 - 3	10	10	3/8 - 18 NPT	-	73	17	27	0,5
	RKH2 - 4	13	13	1/2 - 14 NPT	-	92	22	30	0,65
Ġ Lw ——	RKH2 - 5	20	20	3/4 - 14 NPT	-	97	23	41	1,5
	RKH2 - 6	25	24	1 - 11,5 NPT	-	113	27	46	1,8
<u>'</u>	RKH2 - 7	32	24	1 1/4 - 11,5 NPT	-	131	28	50	1,9
	RKH2 - 8	40	24	1 1/2 - 11,5 NPT	-	139	28	55	2
-L1-l	RKH2 - 9	32	32	1 1/4 - 11,5 NPT	-	115	28	60	3,8
L	RKH2 - 10	40	38	1 1/2 - 11,5 NPT	-	135	28	70	6,1
- Dohmana brankung lajahta	RKH2 - 11 RKH3 - 1	50	48 5	2 - 11,5 NPT	-	140 67	30 10	85 22	9,1
Reihe DIN 2353	RKH3 - 2	6	6	M 12 x 1,5	6 8	67	10	22	-
Reirie Din 2333	RKH3 - 3	8	8	M 14 x 1,5 M 16 x 1,5	10	71	11	22	0,3
SW	RKH3 - 4	10	8	M 18 x 1,5	12	71	11	22	0,3
	RKH3 - 5	10	10	M 18 x 1,5	12	75	11	27	0,5
	RKH3 - 6	13	10	M 22 x 1,5	15	77	12	27	0,5
24. G ØKU T	RKH3 - 7	13	13	M 22 x 1,5	15	84	12	30	0,6
	RKH3 - 8	16	13	M 26 x 1,5	18	84	12	30	0,6
	RKH3 - 9	13**	13	M 22 x 1,5	15	83	12	32	0,75
	RKH3 - 10	16**	15	M 26 x 1,5	18	83	12	32	0,75
 	RKH3 - 11	20	20	M 30 x 2	22	102	14	41	1,5
<u> </u>	RKH3 - 12	25	24	M 36 x 2	28	108	14	46	1,8
_	RKH3 - 13	32	24	M 45 x 2	35	114	16	50	1,9
	RKH3 - 14	40	24	M 52 x 2	42	114	16	55	2
	RKH3 - 15	32	32	M 45 x 2	35	128	16	60	3,6
	RKH3 - 16	40	32	M 52 x 2	42	128	16	60	3,6
	RKH3 - 17	40	38	M 52 x 2	42	133	16	70	5,9
04* Rohrverschraubung schwere	RKH4 - 1	4	5	M 16 x 1,5	8	73	12	22	0,35
Reihe DIN 2353	RKH4 - 2	6	6	M 18 x 1,5	10	73	12	22	0,35
	RKH4 - 3	8	8	M 20 x 1,5	12	76	12	22	0,35
SW	RKH4 - 4	10	10	M 22 x 1,5	14	84	14	27	0,5
	RKH4 - 5	13	13	M 24 x 1,5	16	87	14	30	0,6
	RKH4 - 6	16	13	M 30 x 2	20	91	16	30	0,65
24.	RKH4 - 7	13**	13	M 24 x 1,5	16	87	14	32	0,75
	RKH4 - 8	16**	15	M 30 x 2	20	91	16	32	0,75
	RKH4 - 9	20	20	M 36 x 2	25	110	18	41	1,5
	RKH4 - 10	25	24	M 42 x 2	30	120	20	46	1,9
 L1	RKH4 - 11	32	24	M 52 x 2	38	125	22	55	2,1
L	RKH4 - 12	32	32	M 52 x 2	38	140	22	60	3,7

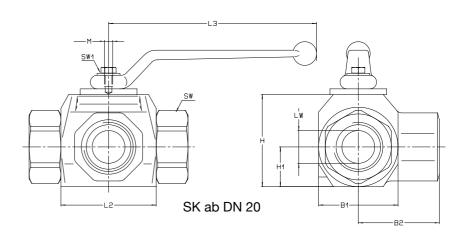
Andere Werkstoffe wie 254SMo oder Hastelloy etc., sowie andere Anschlußarten auf Anfrage.

^{*} Die max. zul. PN bitte den Angaben der Rohrverschraubungshersteller entnehmen

^{**} Gehäuse DN 16 / Kugel LW 15

Dreiwege-Edelstahl-Kugelhahn


Typ: BK / SK


Material:

Gehäuse: Edelstahl AISI 316 Kugel: Edelstahl AISI 316 Schaltwelle: Edelstahl AISI 316 Kugeldichtung: Terlon modifiziert,

mit 15% Fieberglas

Handhebel: Edelstahl AISI 304

Gehäusemaße, gültig für alle Kombinationen

DN	PN 1** (bar)	PN 2** (bar)	L2	L3*	B1	Н	H1	SW1	М
4	400	100	36		26	32	13	9	M5
6	400	100	36		26	32	13	9	M5
8	400	100	36		26	32	13	9	M5
10	400	100	43		32	38	16,5	9	M5
13	350	100	48		35	40	17,5	9	M5
16	350	100	48		38	46	19	12	M6
20	350	70	61		49	57	24,5	14	M6
25	350	70	65		60	60	26,5	14	M6
32	350	70	80		76	84	38	17	M8
40	350	70	85		83	92	43	17	M8
50	350	70	100		100	111	50	19	M8

onen	Schalts	ymbol		Symbol nach DIN ISO 1219
	PN2 + PN1	PN1	L-Bohrung 0° - 90° BestellNr. L	
	PN1+ PN1	PN1 + PN2	T-Bohrung 0° - 90° BestellNr. P	
PN2 + PN1	PN2 + PN2	PN1+ PN2	L-Bohrung, pos. Überdeckung 0° - 90° - 180° BestellNr. T	
PN2 + PN1	PN1+PN1	PN1 + PN2	T-Bohrung 0° - 90° - 180° BestellNr. W	71111

- bei Bedarf anfragen
- ** Für Standardausführung: Druck von PN1 + PN2 siehe Schaltbilder

Auf Wunsch allseits Druckbeaufschlagung möglich = PN1

Bei Bestellung A angeben

Anschlußart	Bestell-Nr.	DN	LW	G	øRA	L	L1	B2	SW	Gewich (kg)
Rohrgewinde DIN/ISO 228	BK1 - 1	4	5	G 1/8"	-	69	9	32	22	0,4
-	BK1 - 2	6	6	G 1/4"	-	69	12	32	22	0,4
SW	BK1 - 3	8	7	G 3/8"	-	69	12	37	22	0,4
	BK1 - 4	10	9	G 3/8"	-	73	12	35	27	0,55
. 🛏 \	BK1 - 5	13	11,5	G 1/2"	-	85	14	37	30	0,7
Ġ L'W	BK1 - 6	16	14	G 1/2"	-	84	14	38	32	0,8
	SK1 - 7	20	18	G 3/4"	-	96	17	47	41	1,55
	SK1 - 8	25	22	G 1"	_	113	19	55	46	2,1
	SK1 - 9	32	22	G 1 1/4"	-	121	20	55	50	2,2
-L1-l	SK1 - 10	32	30	G 1 1/4"	-	110	20	70	60	3,4
 1 -	SK1 - 11	40	35	G 1 1/2"	_	120	24	72	70	4,2
_	SK1 - 12	50	44	G 2"	_	140	28	85	85	6,1
NPT - Innengewinde ANSI B 2.1	BK2 - 1	4	5	1/8 - 27 NPT		69	12	32	22	0,1
NPT - Innengewinde ANSI B 2.1	BK2 - 1	6		1/4 - 18 NPT			17		22	
SW			6			69		32 35		0,4
	BK2 - 3	10	9	3/8 - 18 NPT	-	73	17		27	0,55
	BK2 - 4	13	11,5	1/2 - 14 NPT	-	92	22	42	30	0,7
Ġ Lw ——	SK2 - 5	20	18	3/4 - 14 NPT	-	97	23	47	41	1,55
Ĭ	SK2 - 6	25	22	1 - 11,5 NPT	-	113	27	55	46	2,1
1	SK2 - 7	32	22	1 1/4 - 11,5 NPT	-	131	28	55	50	2,2
L.										
Rohrverschraubung leichte	BK3 - 1	4	5	M 12 x 1,5	6	67	10	32	22	0,35
Rohrverschraubung leichte Reihe DIN 2353	BK3 - 2	6	6	M 14 x 1,5	8	67	10	32	22	0,35
Tiomo Bii V 2000	BK3 - 3	8	7	M 16 x 1,5	10	71	11	32	22	0,35
<u>sw</u>	BK3 - 4	10	7	M 18 x 1,5	12	71	11	32	22	0,35
\searrow	BK3 - 5	10	9	M 18 x 1,5	12	75	11	40	27	0,55
	BK3 - 6	13	9	M 22 x 1,5	15	77	12	40	27	0,55
24. 6 QKU T	BK3 - 7	13	11,5	M 22 x 1,5	15	84	12	42	30	0,65
			<u> </u>				12	42	30	0,65
	BK3 - 8	16	11,5	M 26 x 1,5	18	84				
	BK3 - 9	16	14	M 26 x 1,5	18	83	12	43	32	0,8
<u> </u>	SK3 - 10	20	18	M 30 x 2	22	102	14	47	41	1,6
	SK3 - 11	25	18	M 36 x 2	28	102	14	47	41	1,7
⊢ -∟—	SK3 - 12	25	22	M 36 x 2	28	108	14	55	46	2,1
	SK3 - 13	32	22	M 45 x 2	35	114	16	55	50	2,2
	SK3 - 14	32	30	M 45 x 2	35	128	16	69	60	3,2
	SK3 - 15	40	30	M 52 x 2	42	128	16	68	60	3,2
	SK3 - 16	40	35	M 52 x 2	42	133	16	72	70	4
14* Rohrverschraubung schwere	BK4 - 1	4	5	M 16 x 1,5	8	73	12	32	22	0,4
Reihe DIN 2353	BK4 - 2	6	6	M 18 x 1,5	10	73	12	32	22	0,4
CW	BK4 - 3	8	7	M 20 x 1,5	12	76	12	32	22	0,4
<u>sw</u>	BK4 - 4	10	9	M 22 x 1,5	14	84	14	35	27	0,55
	BK4 - 5	13	11,5	M 24 x 1,5	16	87	14	42	30	0,65
	BK4 - 6	16	11,5	M 30 x 2	20	91	16	42	30	1,7
24' 6 ØRA LW	BK4 - 7	16	14	M 30 x 2	20	91	16	43	32	0,8
	SK4 - 8	20	18	M 36 x 2	25	110	18	47	41	1,6
	SK4 - 9	25	22	M 42 x 2	30	120	20	55	46	2,1
	SK4 - 10	32	30	M 52 x 2	38	140	22	74	60	3,2
	-									

Andere Werkstoffe wie 254SMo oder Hastelloy etc., sowie andere Anschlußarten auf Anfrage.

^{*} Die max. zul. PN bitte den Angaben der Rohrverschraubungshersteller entnehmen

Katalog Nr. 3 Ausgabe Dezember 1994, 1. Auflage

Copyright by Hydraulik Michler Inh.: E. Michler, A-6850 Dornbirn

Alle Rechte, auch der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Inhabers, E. Michler, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Wir verweisen ausdrücklich auf das Urheberrecht gem. DIN und UWG.

Zu Ihrer Information

Dieser Katalog ist nach bestem Wissen und mit größtmöglicher Sorgfalt erstellt worden. Eine Verbindlichkeit kann aus diesem Katalog jedoch nicht abgeleitet werden, da die Produkte ständig einer technischen Weiterentwicklung unterworfen sind. Sollten Sie eine verbindliche Angebotszeichnung benötigen, so fordern Sie diese bei uns an.

Konstruktionsmerkmale

Kugelhähne haben das Konstruktionsprinzip der schwimmenden Kugel. Die Kugel gleitet frei zwischen vorgespannten Dichtungen. Durch dieses Konstruktionsprinzip sind die Kugelhähne wartungsfrei.

Der Druck des Mediums preßt die Kugel an die in Strömungsrichtung hintere Dichtung. Durch diese Maßnahme wird eine sehr gute Dichtheit im Langzeitbetrieb in unterschiedlichen Druckbereichen erreicht. Die Schaltkugel wird durch eine Schaltwelle betätigt, die nach außen durch einen O-Ring abgedichtet ist. Eine am Kopf der Schaltwelle eingefräste Kerbe zeigt die Schaltstellung des Kugelhahnes an. Je nach Einbausituation kann der Schaltgriff um jeweils 45° versetzt angeordnet werden.

Kugelhähne öffnen und schließen bei Drehung des Schaltgriffes um jeweils 90°. Die Schließrichtung ist nach DIN im Uhrzeigersinn rechtsdrehend. Durch Umsetzen der Anschlagscheibe kann die Schließrichtung umgekehrt werden.

Kugelhähne grundsätzlich bis zum Anschlag durchschalten. Sie dürfen nur in den Schaltstellungen geschlossen und geöffnet genutzt werden. Zur Drosselung bzw. Regulierung der Durchflußmenge sind Kugelhähne nicht geeignet. Indifferente Schaltstellungen führen zur Beschädigung der Dichtungen im Kugelbereich.

Ein Kugelhahn ist kein Drosselventil, d.h. - Kugelhahn entweder 100% offen oder 100% zu. Halbgeöffnete Kugelhähne werden undicht und sind daher kein Reklamationsgrund.

Die im Katalog angegebenen Nenndrücke gelten für Betriebstemperaturen bis max. 80°C.

Kugelhähne sind in DIN-gerechter Baulänge lieferbar.

Alle im Katalog dargestellten Kugelhähne sind für das Anwendungsgebiet Hydraulik geeignet.

Kugelhähne für andere Einsatzfälle sind lieferbar. Zur Festlegung lieferbarer Werkstoffkombinationen fragen Sie bitte bei uns an.

Lager und Einbauhinweise

Kugehähne im Auslieferungszustand trocken und schmutzfrei lagern. Schutzkappen erst bei Einsatz entfernen.

Vor Montage Rohrleitungen durchspülen. Rückstände in Rohrleitungen können die Dichtungen des Kugelhahns beschädigen und zu Undichtigkeit führen.

Falls erforderlich nach Montage des Kugelhahns Öffnungs- und Schließrichtung durch Umsetzen der Anschlagscheibe umkehren.

Besondere Prüfbedingungen müssen spätestens bei Auftragserteilung bekanntgegeben werden. Die Lieferung von Kugelhähnen mit 3.1 B oder 3.1 C Zeugnissen nach DIN 50049 ist möglich. (Kostenpflichtig)

Änderungen die dem techn. Fortschritt dienen, sowie Satz- und Druckfehler ausdrücklich vorbehalten.

